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Abstract: Sensor technologies that measure grazing and ruminating behaviour as well as physical
activities of individual cows are intended to be included in precision pasture management. One of
the advantages of sensor data is they can be analysed to support farmers in many decision-making
processes. This article thus considers the performance of a set of RumiWatchSystem recorded variables
in the prediction of insufficient herbage allowance for spring calving dairy cows. Several commonly
used models in machine learning (ML) were applied to the binary classification problem, i.e., sufficient
or insufficient herbage allowance, and the predictive performance was compared based on the
classification evaluation metrics. Most of the ML models and generalised linear model (GLM)
performed similarly in leave-out-one-animal (LOOA) approach to validation studies. However,
cross validation (CV) studies, where a portion of features in the test and training data resulted
from the same cows, revealed that support vector machine (SVM), random forest (RF) and extreme
gradient boosting (XGBoost) performed relatively better than other candidate models. In general,
these ML models attained 88% AUC (area under receiver operating characteristic curve) and around
80% sensitivity, specificity, accuracy, precision and F-score. This study further identified that number
of rumination chews per day and grazing bites per minute were the most important predictors
and examined the marginal effects of the variables on model prediction towards a decision support
system.

Keywords: machine learning; binary classification; herbage allowance; feeding behaviour and
activities; precision pasture management

1. Introduction

One of the key roles of precision pasture management is to ensure that the herbage allowance
is well maintained and utilised for the individual cows through the applications of smart farming
technologies. In order for economical and efficient usage of the technologies, it is extremely important
that the procedure analyses the recorded data to assist farmers in diverse decision-making processes.
The RumiWatchSystem, consisting of a noseband pressure sensor [1] and a pedometer [2], is such a
sensor-based technology in which the physical activities as well as grazing and ruminating behaviour
of individual cows can be recorded. The reliability and validity of sensor data and their applications
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in precision farming were studied in a wide range of literature. For example, Greenwood, et al. [3]
proposed simple initial algorithms for predicting pasture intake by individual cattle using sensor
data. Other studies (e.g., [4,5]) addressed the scope of developing the support systems that could
assist farmers with proper feed allowances, physical activities and behavioural changes, estimation of
herbage dry matter and locomotion behaviour of the cattle.

In a similar context, the present study considers the problem of identifying the cows with
insufficient herbage allowance based on a set of RumiWatchSystem recorded variables. Since direct
measurement of herbage intake of cows on pasture is difficult, time consuming and expensive,
this study explored the scope of using the variables as predictors of a decision class in binary
classification, i.e., sufficient or insufficient herbage allowance. The data were collected from a study
where a group of spring calving dairy cows had access to 100% of their intake capacity as herbage
allowance, whereas another group had 60% of their intake capacity [6]. Each cow was equipped with
an automated noseband pressure sensor and a pedometer, which continuously recorded the feeding
and activity related variables. For the present study, the recorded variables were summarised (total or
mean) to extract the features in 24-hour windows. The rationale of this study lies in the fact that the
complexities of herbage intake measurements can be reduced substantially if a classification model
is found that efficiently predicts the insufficient allowance using the extracted features, towards a
decision support system for optimal pasture management.

The subsequent sections of this article are organised as follows. The datasets used in this study,
exploratory analysis for variable selection, commonly used machine-learning (ML) models in R [7]
and the performance metrics used for evaluating and comparing the models are discussed in Sectoin 2.
Section 3 demonstrates the results of validation studies for the commonly used ML models and
generalised linear model (GLM). This section further identifies the important variables, observed
thresholds and the marginal effects of the variables on the model prediction. Section 4 discusses the
study findings followed by a summary of this article in Section 5.

2. Materials and Methods

2.1. Data Collection

Data were collected for this study from a larger overall experiment at Teagasc, Moorepark Dairy
Research Farm, Animal & Grassland Research and Innovation Centre, Fermoy, Co. Cork, Ireland.
The experiment was conducted in spring time 2016 using 105 calving cows to examine the effects of
restricted herbage allowance on milk production, immunology and indicators of reproductive health
of grazing dairy cows. Ethical approval was received from Teagasc Animal Ethics Committee (TAEC;
TAEC100/2015) and the procedure authorisation was granted by the Irish Health Products Regulatory
Authority (HPRA).

For the present study, 40 focal cows were selected for recording the feeding behaviour and
activities using the RumiWatchSystem. Out of these, 10 cows were randomly selected to have 100% of
their intake capacity. The remaining 30 cows had restricted herbage allowance, i.e., 60% of their intake
capacity. The 60% group was further divided into six blocks with respect to the period of restriction
(two-week or six-week) and stages of lactation at the commencement of restriction: start (S: restriction
started at the beginning of experiment), mid (M: two weeks after the S restriction commenced) or
late (L: four weeks after the S restriction commenced). The behaviour of cows in the 100% group was
monitored over a 10-week period. The three blocks S2, M2 and L2, which received two-week restriction
of herbage allowance, had their behaviour recorded during the full two-week period, whereas the
behaviour of blocks M6 and L6, which received six-week restriction, were recorded during the last
two weeks of the restriction period. The S6 block was monitored during the entire six-week restriction
period in order to mitigate the imbalance frequency of rows for the 100% and 60% groups in the
combined data.
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The RumiWatchSystem recorded pressure and accelerometer data in a 10 Hz resolution. The raw
data were then converted into one-hour summaries by generic algorithms included in the RumiWatch
Converter V.7.3.36, which were later summarised in individual daily records (features) per animal.
There was some data loss and changing cows due to injuries and breakdown of sensors. As a result,
there were 63 individual daily records per cow in the 100% group over a 10-week period included
and 12 or 13 daily records per individual cow in the 60% group (except S6 block) depending on
the application time of the sensor, as only complete daily records during the two-week period were
considered. Only two cows had less than 12 daily records, due to technical issues with the sensor
device. In case of S6 block, there were 38 individual daily records for four cows and 36 daily records
for one cow during the six-week period included. The missing and incomplete rows were removed for
the safety and strictness in comparing the prediction performance of the competing models.

Thus, the combined dataset included 1096 rows and 21 columns with 629 rows for the cows with
100% herbage allowance and 467 rows for the cows with 60% allowance. Each column included the
extracted features (daily mean or total) of individual cows based on the recorded feeding behaviour or
activity related variable. Out of the 21 features (variables), those listed in Table 1 were, on average,
significantly different in the 100% and 60% allowance groups, hence considered as model predictors in
this study. The study design is further discussed in [6].

The combined dataset were divided into six subsets based on the blocks of cows in the 60%
allowance group. Throughout this paper, S2, S6, M2, M6, L2 and L6 denote the blocks of cows with
restricted allowance as well as the datasets, which contained the respective rows from the 60% and
100% herbage allowance groups. In addition, the 100% and 60% groups are called sufficient allowance
and insufficient allowance in the prediction of decision classes. The S2, M2 and L2 datasets were merged
to create W2, which comprised the recorded features for two-week duration. Similarly, S6, M6 and L6
datasets were merged to create W6. These additional subsets of combined data were used to compare
the changes in prediction performance as the duration of 60% herbage allowance increased from two to
six weeks, regardless the lactation stages of the cows. Thus, the number of rows which corresponded
to the cows with unrestricted and restricted allowance in the subsets S2, S6, M2, M6, L2 and L6 were
(130, 65), (130, 65), (119, 60), (130, 56), (130, 52), and (120, 38), respectively.

In the present study, a number of predictive models were first applied to the combined data and
the performance was compared based on leave-out-one-animal (LOOA [8]) approach to validation
and cross validation (CV) studies. The models were further compared using the subsets of combined
data based on CV studies.

2.2. Variable Selection

A set of predictor variables was selected based on the exploratory analysis, i.e., box plots (Figure 1),
t-tests (Tables A1 and A2) and analysis of variance (Table A3). The selected variables were broadly
classified as grazing behaviour, rumination behaviour and activity. The definitions, measurement units
and notations used to denote the variables are presented in Table 1. For each variable, the measurement
unit indicates the extracted feature (using 24-hour window) considered in this study. Throughout this
paper, the variable names will refer to the corresponding features extracted from the sensor data.

On average, the RumiWatchSystem-recorded measures of these variables in the sufficient
allowance group was significantly different from at least one of the blocks of insufficient allowance
group. For example, using the combined data, the side-by-side box plots in Figure 1 show that most of
the selected variables centred higher in the 100% group than 60% group, except bite frequency per
minute (BITEFREQ) and head activity index (HACTIVITY), which centred higher in the 60% group.
In this study, GLM and ML models used these variables as predictors of the herbage allowance classes.
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Table 1. List of feeding behaviour and activity related variables used in the classification models.

Notation Grazing Behaviour

BITEFREQ Bite frequency or grazing bites per min (n/min)
GRAZINGSTART Number of grazing bouts started per day (grazing bout = minimum duration of

7 min and intra-bout interval is smaller than 7 min [9]) (n/day)

Rumination Behaviour

RUMINATECHEW Number of rumination chews per day (n/day)
RUMICHEWBOLUS Mean number of rumination chews per bolus (n/bolus)
RUMIBOUTLENGTH Mean duration of a rumination bout (rumination bout = minimum duration of 3

min and intra-bout interval is smaller than 1 min [9]) (min/bout)
RUMIBOUTTIME Time of rumination within all rumination bouts (min/day)

Activity

HACTIVITY Head movement activity index (n) based on accelerometer data; the averaged
variance of 3-dimensional acceleration captured on the head in 10-s segments

LAYDOWN Number of event (n) at which the pedometer angle changes its position from a
vertical angle towards a horizontal angle for a duration of at least 50 s when
the cow is lying down or standing up [2]

Figure 1. Side-by-side box plots of selected variables using the combined data for sufficient (100%) and
insufficient (60%) herbage allowance groups.

2.3. Classification Models

The commonly used ML models and GLM with binomial family were considered for the binary
classification problem. For convenience, the dependent variable herbage allowance is denoted by
y where y = 1 and 0 refer to the insufficient and sufficient herbage allowance class, respectively.
Given a set of predictor variables X for n observations, the GLM with logit link (Equation (1)) predicts
insufficient herbage allowance if the estimated logit, log(πi/(1 − πi)) > 0 or sufficient allowance if
log(πi/(1 − πi)) < 0.
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log(
πi

1 − πi
) = Xβ. (1)

Here, πi = p(y = 1) denotes the probability of insufficient allowance and 1 − πi = p(y = 0)
denotes the probability of sufficient allowance for the ith observation (i = 1, 2, . . . , n). The GLM was
implemented using the glm function of the stats package in R [7]. Table 2 presents the list of ML
methods considered in this study, and the packages that implement the methods in R. In each case,
the underlying classification model used the variables of Table 1 as predictors. For more details and
familiarising with hyper-parameters of specific ML, see the R package caret [10].

Table 2. List of machine learning methods with R packages.

Machine Learning R Package Function(s)

k-Nearest Neighbour (kNN) class [11] knn
Linear Discriminant Analysis (LDA) MASS [11] lda
Neural Network (NNET) nnet [11] nnet
Naïve Bayes (NB) e1071 [12] naiveBayes
Support Vector Machine(SVM) e1071 [12] svm
Decision Tree (DT) rpart [13] rpart
Random Forest (RF) randomForest [14] randomForest
Extreme Gradient Boosting (XGBoost) xgboost [15] xgb.DMatrix, xgb.train

In this study, first the performance of the ML models and GLM was compared using combined
data. At this stage, the predictive performance of the models was evaluated based on LOOA approach
and CV studies. Then, GLM and selected ML models, which achieved desirable performance, were
further compared based on CV studies using S2, M2, L2, S6, M6, L6, W2 and W6 datasets. Thus,
the effect of restriction period on predictive performance was examined for separate blocks and
regardless the lactation stages of the calving cows. Finally, the important variables and partial
dependencies of model prediction were examined for random forest (RF).

2.4. Evaluation Metrics

The prediction performance of the candidate models was compared based on a number of
classification evaluation metrics. The metrics were estimated in validation studies using the confusion
matrix (Table 3) of actual and predicted classes for the test cases. Table 4 shows the estimation formulae
for the list of metrics considered in this study.

For binary classification, one way to evaluate the performance of a predictive model is the
estimation of accuracy, i.e., the rate of correctly predicting the class of a test case. Accuracy is a
commonly used evaluation metric since it takes into account both true negative and true positive rates.
Here, negative means sufficient allowance and positive means insufficient allowance. However, in the
case of imbalance training data, accuracy is often overestimated. The area under receiver operating
characteristic curve (AUC [16]) also considers true negative and true positive rates and is often used
along with other evaluation metrics. In the context of present study, AUC denotes the probability
that a randomly chosen cow with insufficient allowance is ranked higher than a cow with sufficient
allowance. Both accuracy and AUC range in value from 0 to 1, a higher value indicating greater ability
to discriminate one class from the other. According to Steensels, et al. [17], a diagnostic test is usually
classified as excellent (AUC = 0.9–1), good (AUC = 0.8–0.9), fair (AUC = 0.7–0.8), poor (AUC = 0.6–0.7)
or fail (AUC = 0.5–0.6).

Since the subsets of the combined data were unbalanced, accuracy and AUC were not sufficient
in this study to validate the performance of the competing models.
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Table 3. Confusion matrix for estimating the classification evaluation metrics based on the number of
actual and predicted classes among the test cases.

Predicted Herbage Allowance Allocated Herbage Allowance

Insufficient Sufficient

Insufficient True Positive (TP) False Positive (FP)
Sufficient False Negative (FN) True Negative (TN)

Table 4. Estimators of sensitivity, specificity, accuracy, positive predictive value (PPV), F-score and the
area under receiver operating characteristic curve (AUC) in terms of the number of true positive (TP),
false positive (FP), true negative (TN) and false negative (FN) classes among the test cases.

Evaluation Metric Estimator

Sensitivity
TP

TP + FN
Specificity

TN
TN + FP

Accuracy
TN + TP

TP + FP + TN + FN
Positive predictive value (PPV)

TP
TP + FP

F-score
2 × Sensitivity × PPV

Sensitivity + PPV
AUC Area under ROC curve

Moreover, in the case of an animal monitoring model, it is often more important to identify cows
with insufficient feed allowance than sufficient allowance. Thus, additional metrics, namely specificity,
sensitivity, positive predictive value (PPV) and F-score, were considered in this study. Here, specificity
(rate of predicting sufficient allowance given the cow had sufficient allowance) assesses the prediction
performance for the test cows in the 100% herbage allowance group. Conversely, sensitivity, PPV and
F-score focus on the correct prediction rate for cows with insufficient herbage allowance. Sensitivity of
a model estimates the rate at which insufficient allowance was predicted when a randomly selected cow
actually had 60% allowance. The PPV metric further estimates the proportion of predicted insufficient
allowance that were actually insufficient. The F-score considers both sensitivity and PPV since it is the
harmonic mean of these two metrics. Thus, a high F-score implies that the model is highly efficient in
predicting insufficient herbage allowance.

In this study, the performance of the candidate models was compared based on the estimates of
these metrics using validation studies. For the combined data, the estimates were first obtained based
on LOOA approach, where data from one animal create the test set while the remaining animals create
the training set. Since the candidate models are trained with no overlapping features that come from
the same animal in the test set, the LOOA approach gives the estimated metrics that are more reliable
in the prediction of new (unseen) animal. However, in the present context, since the previous data
of cows on pasture can be included in the training set, the evaluation metrics were further estimated
based on CV studies. This approach identified the models, which may perform relatively better when
a support system continuously updates the training data with the previous records of cows on pasture.
Given a dataset, the CV study was conducted as follows.

i. Randomly split the observations into a training and a test set such that each observation has 70%
chance to be included in the training set and 30% chance to be included in the test set.

ii. Train the ML models (fit the GLM) in the training set and apply them for predicting the herbage
allowance classes in the test set.

iii. Create a confusion matrix for each model and estimate the evaluation metrics of Table 4.
iv. Repeat Steps i–iii a large number (1000) of times and summarise the results by the mean and

standard error of the estimates for each model.
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3. Results

3.1. Predictive Performance

Tables 5 and 6 summarise the results for combined data using LOOA approach to validation and
CV studies. In LOOA approach, since the estimates were obtained by using a single confusion matrix
for all calving cows under study, the standard errors of the estimates were not applicable.

Table 5. Predictive performance of machine learning and generalised linear models based on the
estimated sensitivity, specificity, accuracy, positive predictive value (PPV), F-score and the area under
receiver operating characteristic curve (AUC) using leave-out-one-animal approach to validation
studies for combined data.

Classifier Sensitivity Specificity Accuracy PPV F-Score AUC

kNN 0.70 0.71 0.71 0.64 0.67 0.78
NB 0.72 0.74 0.73 0.68 0.70 0.81
NNET 0.77 0.67 0.71 0.63 0.70 0.80
LDA 0.78 0.65 0.70 0.62 0.69 0.79
DT 0.74 0.67 0.70 0.63 0.68 0.78
SVM 0.74 0.61 0.67 0.59 0.66 0.74
XGBoost 0.73 0.59 0.65 0.57 0.64 0.72
RF 0.75 0.63 0.68 0.60 0.67 0.76
GLM 0.74 0.64 0.69 0.63 0.70 0.76

The estimates in bold correspond to the best models.

Table 6. Predictive performance of machine learning and generalised linear models based on the
estimated sensitivity, specificity, accuracy, positive predictive value (PPV), F-score and the area under
receiver operating characteristic curve (AUC) using cross validation studies for combined data.

Classifier Sensitivity Specificity Accuracy PPV F-Score AUC

kNN 0.66 (0.004) 0.67 (0.003) 0.67 (0.002) 0.65 (0.003) 0.65 (0.003) 0.73 (0.003)
NB 0.73 (0.004) 0.73 (0.003) 0.73 (0.002) 0.71 (0.004) 0.72 (0.003) 0.81 (0.003)
NNET 0.76 (0.004) 0.78 (0.004) 0.76 (0.002) 0.76 (0.004) 0.76 (0.003) 0.85 (0.003)
LDA 0.76 (0.003) 0.78 (0.004) 0.77 (0.002) 0.77 (0.004) 0.76 (0.002) 0.85 (0.002)
DT 0.75 (0.003) 0.76 (0.004) 0.75 (0.003) 0.74 (0.005) 0.74 (0.003) 0.83 (0.003)
SVM 0.79 (0.004) 0.80 (0.003) 0.79 (0.002) 0.79 (0.004) 0.79 (0.002) 0.88 (0.002)
XGBoost 0.79 (0.003) 0.81 (0.003) 0.80 (0.002) 0.80 (0.003) 0.79 (0.002) 0.88 (0.002)
RF 0.80 (0.003) 0.80 (0.003) 0.80 (0.002) 0.79 (0.004) 0.79 (0.002) 0.88 (0.002)
GLM 0.76 (0.004) 0.77 (0.003) 0.76 (0.002) 0.76 (0.004) 0.76 (0.003) 0.85 (0.003)

Standard errors are indicated in parentheses. The estimates in bold correspond to the best models.

It can be observed that in both LOOA and CV studies the ML models predicted the sufficient and
insufficient allowance classes relatively more accurately than GLM. Table 5 reveals that, on average, the
prediction accuracy of insufficient allowance using linear discriminant analysis (LDA) (78% sensitivity)
and that of sufficient allowance using naïve Bayes (NB) (74% specificity) were higher than all other
models. Additionally, the NB model attained relatively higher prediction accuracy (73%), PPV (68%),
F-score (70%) and AUC (81%), which indicate that the model can be more reliable in predicting the
herbage allowance classes of new calving cows based on the current data. The neural network (NNET)
and GLM also attained the F-scores equal 70%. The more advanced ML models such as RF and
XGBoost attained similar accuracy when predicting the insufficient allowance but relatively lower
accuracy when predicting the sufficient allowance in LOOA approach. The sensitivity, specificity,
accuracy, PPV, F-score and AUC estimates of random forest (RF) model were 75%, 63%, 68%, 60%,
67% and 76%, respectively. Comparing the results in Table 6, it is further observed that there was
an increase in the estimated metrics of each model when a portion of features in the training and
test set were observed from the same cows. This indicates that the models were over trained in CV
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approach, i.e., the estimates may be reliable in case the future prediction of herbage allowance is
based on previous records of the cows included in the training set. Using CV approach, the support
vector machine (SVM), extreme gradient boosting (XGBoost) and RF models achieved relatively higher
accuracy (≈ 80%) and AUC (88%) than GLM and other ML models. The observed accuracy and AUC
for GLM were 76% and 85%. Comparing the sensitivity, specificity, PPV and F-score, the SVM, XGBoost
and RF models, on average, scored higher values (≈ 80%), whereas the estimates for other ML models
lied mostly in the range 70%–78%. GLM attained these estimates around 76%. The standard errors of
the estimates were small in CV studies, which indicate that the estimates were precise. Based on the
results in Tables 5 and 6, GLM, RF, XGBoost, SVM, LDA, NNET, and NB models were selected for CV
studies using the subsets of combined data.

3.2. Effects of Restriction Period

Tables 7 and 8 summarise the CV results for GLM and RF using the subsets of combined data.
Similar tables are created for SVM, XGBoost, LDA, NNET and NB in the Appendix A (Tables A4–A8).

Table 7. Predictive performance of generalised linear model based on the estimated sensitivity,
specificity, accuracy, positive predictive value (PPV), F-score and the area under receiver operating
characteristic curve (AUC) for two-week and six-week restriction periods among the cows in early (S),
mid (M) and late (L) lactation stage using cross validation studies.

Subset Sensitivity Specificity Accuracy PPV F-Score AUC

S2 0.78 (0.01) 0.81 (0.006) 0.80 (0.006) 0.68 (0.013) 0.72 (0.01) 0.88 (0.007)
S6 0.84 (0.01) 0.88 (0.006) 0.86 (0.005) 0.81 (0.01) 0.82 (0.008) 0.94 (0.004)

M2 0.82 (0.012) 0.82 (0.007) 0.81 (0.006) 0.69 (0.014) 0.74 (0.01) 0.89 (0.007)
M6 0.78 (0.014) 0.80 (0.005) 0.79 (0.004) 0.62 (0.012) 0.68 (0.009) 0.87 (0.006)

L2 0.74 (0.015) 0.81 (0.007) 0.78 (0.006) 0.63 (0.016) 0.67 (0.012) 0.85 (0.008)
L6 0.81 (0.02) 0.84 (0.005) 0.83 (0.005) 0.67 (0.02) 0.72 (0.013) 0.90 (0.007)

W2 0.74 (0.008) 0.84 (0.004) 0.81 (0.003) 0.63 (0.008) 0.68 (0.006) 0.87 (0.004)
W6 0.71 (0.009) 0.85 (0.003) 0.81 (0.003) 0.61 (0.008) 0.65 (0.007) 0.86 (0.004)

Standard errors are indicated in parentheses.

Table 8. Predictive performance of random forest based on the estimated sensitivity, specificity,
accuracy, positive predictive value (PPV), F-score and the area under receiver operating characteristic
curve (AUC) for two-week and six-week restriction periods among the cows in early (S), mid (M) and
late (L) lactation stage using cross validation studies.

Subset Sensitivity Specificity Accuracy PPV F-Score AUC

S2 0.90 (0.011) 0.87 (0.007) 0.88 (0.006) 0.78 (0.015) 0.84 (0.01) 0.96 (0.005)
S6 0.91 (0.008) 0.91 (0.005) 0.91 (0.004) 0.86 (0.01) 0.88 (0.006) 0.97 (0.002)

M2 0.89 (0.015) 0.87 (0.007) 0.88 (0.006) 0.79 (0.015) 0.83 (0.013) 0.95 (0.008)
M6 0.89 (0.009) 0.88 (0.004) 0.89 (0.004) 0.79 (0.011) 0.83 (0.007) 0.95 (0.002)

L2 0.87 (0.011) 0.89 (0.006) 0.88 (0.005) 0.79 (0.014) 0.82 (0.009) 0.95 (0.005)
L6 0.91 (0.015) 0.90 (0.005) 0.90 (0.005) 0.80 (0.02) 0.85 (0.013) 0.96 (0.005)

W2 0.78 (0.008) 0.84 (0.004) 0.82 (0.003) 0.62 (0.01) 0.68 (0.007) 0.88 (0.004)
W6 0.78 (0.006) 0.88 (0.003) 0.85 (0.002) 0.69 (0.009) 0.73 (0.006) 0.91 (0.002)

Standard errors are indicated in parentheses.

Using these tables, the relative predictive performance can be compared for two-week and
six-week restriction periods. Thus, the effect of restriction period on the underlying models can be
examined by comparing the pairs of rows (S2, S6), (M2, M6), (L2, L6) and (W2, W6). For example,
the S2 and S6 rows indicate the changes in the estimated metrics due to a relatively longer period
of insufficient herbage allowance for the cows in an early stage of lactation. Similarly, M2 and M6
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rows indicate the effects of restriction period for the cows in a mid stage of lactation, and L2 and L6
rows indicate the effects for the cows in a late stage of lactation at the commencement of restricted
allowance. The additional rows, W2 and W6 compare the overall effect of a longer restriction period
on the predictive performance, regardless the lactation stages.

In Table 7, it can be observed that GLM achieved more than 80% specificity, accuracy and AUC
in most cases. The high specificity estimates indicate that if a randomly selected cow had sufficient
herbage allowance, GLM would predict sufficient allowance with a rate higher than 80%. However,
the estimated sensitivity, PPV and F-score of GLM were relatively low. Unlike S and L, the estimates
for block M decreased with the increase of restriction period to six weeks. This indicates that the
effect of restriction period on the performance metrics of GLM was not consistent with all lactation
stages. The W2 and W6 rows of Table 7, however, reveal that the overall effect of restriction period
on GLM based prediction was negative, since the predictive performance decreased for six-week
restriction period.

The results for RF (Table 8), SVM and XGBoost (Tables A4 and A5) were different from GLM in
that, the performance metrics increased in most cases as the restriction period increased from two
weeks to six weeks. For the XGBoost and RF models, the effect of restriction period was similar in
the S, M and L blocks. While the estimates for SVM were, in general, higher than GLM, the XGBoost
and RF models were more consistent and performed relatively better than SVM in most cases. The
estimated sensitivity of the RF model was at least 87% for each lactation stage. Likewise, the PPV and
F-score estimates were close to 80% or higher in most cases. However, these estimates decreased and
lied in the range 60%–80% for W2 and W6 data. Nonetheless, the correct prediction rate of insufficient
allowance by the RF model was higher than all other models. Table 8 further reveals that the estimated
metrics based on the S6, M6 and L6 data were no less than the estimates based on the S2, M2 and L2
data. Thus, the CV studies demonstrated that the effect of restriction period on the performance of
RF model was consistent with the lactation stages. The XGBoost model performed similarly as the
RF model in most cases (Table A5). As with CV approach for combined data, the LDA, NNET and
NB models attained relatively lower values of the estimates (Tables A6–A8) in the separate analyses,
especially in case of predicting insufficient allowance class. Based on the validation results in this
study, it can be concluded that, apart from high (> 80%) specificity, accuracy and AUC in all cases,
the RF and XGBoost models maintained a nice balance in correct prediction rate of sufficient and
insufficient herbage allowance using CV approach, hence preferred to other candidate models in the
present context.

3.3. Partial Dependencies on Important Variables

Figure 2 shows the relative importance of the predictor variables using RF. The predictors are
plotted in order of rank against the mean decrease of Gini coefficients. It is observed that the number
of rumination chews per day (RUMINATECHEW), BITEFREQ, mean duration of rumination bout
(RUMIBOUTLENGTH), rumination time within all rumination bouts (RUMIBOUTTIME) and mean
number of rumination chews per bolus (RUMICHEWBOLUS) were relatively more important for the
prediction of herbage allowance. The importance plots in Figure 2 were not sufficient since it was
not clear which predictors had positive and negative effects on the model prediction. The RF model
has an advantage since it allows graphical examination of partial dependencies of the model on each
predictor. Figure 3 shows the partial dependence plots (PDP [18]) using the probability of insufficient
herbage allowance (decision class). Here, the estimated probabilities (p̂s) of the decision class were
plotted against the observed values of the predictor variables.
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Figure 2. Variable importance plots for random forest based on mean decrease of Gini coefficients.

Figure 3. Partial dependence plots for the marginal effects of the predictors on the random forest
model: Estimated probability of insufficient allowance versus the observed values of each predictor in
the combined data.

Thus, the PDPs indicate how the variables marginally affected the prediction based on RF model.
Assuming all other variables fixed at the centre, the values of a given predictor that correspond to the
probability higher than 0.5 indicate a positive effect and the values that correspond to the probability
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lower than 0.5 indicate a negative effect on the prediction. The values on the x-axis which correspond
to p̂ ≈ 0.5 imply that the sufficient and insufficient classes are not distinguishable (i.e., both the classes
are equally likely). This implies that the predictor may not have noticeable marginal effect on the
model if the PDP lies near 0.5 over the range values on the x-axis. Figure 3 reveals that the marginal
effects of number of grazing bouts started per day (GRAZINGSTART) and time of rumination within
all rumination bouts (RUMIBOUTIME) were not significant, whereas the remaining variables had
noticeable marginal effects on the prediction based on RF model.

Intuitively, the cut-off point on the x-axis which corresponds to the unique intersection point of
PDP and the horizontal dashed line (p̂ ≈ 0.5), indicates that the model declares insufficient allowance
and sufficient allowance for the values of the predictor that lie in the opposite direction of the cut-off
point. In particular, Figure 3 suggests that for a given predictor, insufficient allowance was more
likely than sufficient allowance when p̂ > 0.5, and it was less likely than sufficient allowance when
p̂ < 0.5. In the present study, thus the RF model tended to declare insufficient herbage allowance for
most of the predictors being lower than the cut-off points, except BITEFREQ and HACTIVITY. While
BITEFREQ showed increasing positive effect for values higher than the cut-off point, the positive effect
of HACTIVITY gradually decreased near 200. Moreover, RUMICHEWBOLUS had positive effects in
the range < 50/bolus, negative effects in the range > 60/bolus and no noticeable effects in the range
50–60/bolus.

3.4. Thresholding the Predictors

The cut-off points on the x-axis of PDPs suggest the observed thresholds for the predictors that
marginally discriminate the prediction of insufficient herbage allowance from the sufficient allowance.
However, the PDPs assume that the predictors are not correlated. Violation of this assumption may
result in biased marginal effects and cut-off points, since this often lead the data points to occur in the
areas of the distribution where the actual probability is very low. This complicates the interpretation of
partial dependencies and may result in misleading thresholds. Based on the variable importance plots
and PDPs, the pairwise correlations among the important predictors are plotted in Figure 4.

Figure 4. Pairwise correlations among the important predictors in the random forest model. Intensity
of blue and red colour represents the strength of positive and negative correlation, respectively.
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It can be seen that the pairs (RUMINATECHEW, RUMIBOUTLENGTH) and (BITEFREQ,
HACTIVITY) were moderate to highly correlated, and the pairs (RUMINATECHEW,
RUMICHEWBOLUS) and (RUMICHEWBOLUS, RUMIBOUTLENGTH) were weak to moderately
correlated. One approach to simultaneously studying the marginal effects of two correlated variables
is to plot the estimated probabilities in a contour plot as shown in Figure 5.

Figure 5. Contour plots for the partial dependencies of random forest on correlated predictors: Colour
intensity represents the estimated probability of insufficient allowance versus the recorded predictors
in the combined data.

Here, colour represents the intensity of effects on the model due to simultaneously changing
the predictor variables on the x- and y-axis. The prediction of the RF model was insufficient herbage
allowance in the dark blue area and sufficient herbage allowance in the dark red area. In the range from
light red/blue to white area, the predictions would be similar to random guesses, hence not reliable.

Based on the contour plots and PDPs, the estimated ranges of predictor values which correspond
to p(y = 0) > 0.5 and p(y = 1) > 0.5 are presented in Table 9. The observed thresholds are
approximate (using set.seed(8356) in R) since the RF algorithm randomly selects a number of rows and
columns for training sets, which may result in slightly different values each time the model is run.

Nonetheless, Table 9 exhibits heuristically the predictor values at which the RF model tended to
predict the sufficient and insufficient herbage allowance for the spring calving dairy cows under study.
For example, given all other predictors fixed at the centre, the RF model would predict insufficient
allowance if the RumiWatchSystem recorded BITEFREQ in the range 64–82/min and HACTIVITY
index in the range 112–170. Similarly, all other thresholds can be interpreted. It is important to note
that the ranges of RUMIBOUTTIME which corresponded to p̂(y = 0) > 0.5 and p̂(y = 1) > 0.5
were not distinct. Thus, RUMIBOUTTIME exhibited no significant marginal effect in the predictive
performance of the RF model.
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Table 9. Observed ranges of predictor values that correspond to the prediction of sufficient (y = 0)
and insufficient (y = 1) herbage allowance by the random forest model.

Predictor Variables p̂(y = 0) > 0.5 p̂(y = 1) > 0.5

Min Max Min Max

BITEFREQ 46 63 64 82
GRAZINGSTART 8 13 2 7
RUMINATECHEW 28397 44062 8461 27685
RUMICHEWBOLUS 61 69 39 50
RUMIBOUTLENGTH 33 58 15 32
RUMIBOUTTIME 367 631 205 469
HACTIVITY 69 110 111 170
LAYDOWN 8 13 2 7

4. Discussion

The results of LOOA and CV approaches for combined data identified a set of ML models, which
achieved relatively higher accuracy than GLM. The observed differences in the estimates using the two
approaches indicate that while most ML models and GLM may be equally reliable in predicting the
insufficient allowance of new calving cows, the SVM, XGBoost and RF models may perform relatively
better, when the previous records of cows on pasture can be included in the training set. Since the
aim of this study is to assist developing a support system, which continuously updates the data of all
cows, in the present context, it is more practical that a portion of overlapping features in the training
and test set may come from the same cows. Thus, the present study highlights validation of model
performance based on CV studies.

The results of CV studies demonstrate that RF and XGBoost out performed GLM and all other ML
models in predicting both sufficient and insufficient allowance classes. The SVM model also showed
desirable performance in most cases. NNET is one of the most popular ML methods, which performs
well for large and complex datasets. However, the present study involved a relatively small dataset
and applied a simple (single layer) NNET due to an insufficient training set for a more sophisticated
NNET. The single layer NNET performed similar to GLM, LDA, and NB models but did not perform
as good as RF or XGBoost in CV studies.

The separate CV studies using the subsets of combined data indicate that the predictive
performance was affected by the duration of restricted allowance among the 60% herbage allowance
groups. Intuitively, if the restricted herbage allowance affects the feeding behaviour and activities, it is
reasonable to assume that, in general, cows with a longer restriction period would exhibit a greater
difference from the unrestricted group than those with a shorter restriction period. Thus, a good
predictive model would distinguish the herbage allowance classes more efficiently when applied
to the test cases from S6, M6, L6 and W6 data compared to S2, M2, L2 and W2 data. In this study,
it was demonstrated that the estimated performance metrics for the RF and XGBoost models were
consistently higher in cases of longer restriction periods.

Additionally, the ML methods have advantage over GLM since the underlying models consider
nonlinear relationships and do not rely on strict assumptions. Rather the algorithms learn from the
training datasets, develop a classification rule based on the learning and validate the rule to the unseen
cases before generalising the model for applications to the new cases. For example, the decision tree
(DT) model learns how to best split the dataset into smaller and smaller subsets for predicting the target
classes. The splitting process continues until no further knowledge gain can be made or a pre-set rule
is met (e.g., reaches the maximum depth of the tree). The learning process of DT is further improved in
more advanced and efficient algorithms such as the RF and XGBoost algorithms, which build multiple
DTs from randomly selected subsets of the training set and merge the knowledge together to generate
a final model. Thus, RF and XGBoost usually achieve greater accuracy and stable prediction as shown
in CV studies. However, in case of LOOA approach, these models performed similar to other ML
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models and GLM in predicting insufficient allowance class but attained relatively lower specificity.
Since our specific aim in this study is to assist creating a decision support system, which may include
the previous records in training the models, and identify cows with insufficient allowance for farmers,
the CV approach further demonstrated that the additional data improved the prediction performance
of RF, XGBoost and SVM, relatively better than all other candidate models.

Using CV studies the estimated AUC of the RF, XGBoost and SVM models was above 90% in
most cases, which indicate that these models, in general, achieved excellent classification performance.
The results from the combined data further show that the estimates of all other metrics were close to
80% or higher. Using the subsets of combined data, while the estimated specificity was more than 80%
in all cases, the sensitivity estimates were relatively low using W2 and W6 data. Moreover, the PPV and
F-score estimates for the RF and XGBoost models were higher than SVM in all subsets. One possible
reason for the alterations in the results for W2–W6 data and separate blocks can be the effect of lactation
stages, i.e., the variation of predictors among the lactation stages in the combined datasets. In general,
the RF, XGBoost and SVM model showed relatively better performance in the separate analyses using
the pairs (S2, S6), (M2, M6) and (L2, L6) compareed to the merged datasets W2 and W6.

In practice, since the duration of insufficient allowance is usually unknown, the relative
importance and marginal effects of the predictors were studied using the combined data.
The importance plots indicated that the number of rumination chews per day, grazing bites per
minute, mean duration of a rumination bout, time of rumination within all rumination bouts and
mean number of rumination chews per bolus were relatively more important predictors. The partial
dependence plots further revealed that grazing bites per minute and head activity index had positive
marginal effects while the number of rumination chews per day, mean number of rumination chews
per bolus, mean duration of a rumination bout and standing or lying frequency index had negative
marginal effects on the RF model. The effects of number of grazing bout starts and time of rumination
within all rumination bouts were not significant.

As the correlation among the important predictors was taken into account, the contour plots
further revealed the observed ranges for the correlated predictors, at which the RF model was more
likely to declare sufficient and insufficient herbage allowance class. It was observed that the RF model
would predict insufficient allowance when the RumiWatchSystem recorded higher values for BITEFREQ
(> 64/min) and HACTIVITY (> 111), and lower values for RUMINATECHEW (< 27685/day),
RUMICHEWBOLUS (< 50/bolus), RUMIBOUTLENGTH (< 32 min/bout), LAYDOWN (< 7) and
GRAZINGSTART (< 7/day).

As one of the key roles of precision pasture management is to ensure that herbage allowance
is well maintained and utilised for the individual cows, our findings have important implications
in the quest to develop precise and reliable decision support systems for pasture management in
order to assist farmers. With growing consumer demands for animal welfare [19] and the worldwide
human population increase [20], there is pressure on farmers to optimally utilise the world’s grasslands.
Since grassland is heterogenic, herbage growth is almost unpredictable, and individual feed intake
differs between cows, pasture management is difficult and laborious. However, at the onset of pasture
management, farm staff know that the cows on pasture have enough herbage to cover their requirement.
It can therefore be of great help for farmers to detect the point of change from sufficient to insufficient
pasture allocation for the individual cows. As the support system is aimed to regularly update the
behavioural data, the current records can be added to improve the allocation prediction. Thus, all
the previously recorded features of the cows feed into the model for predicting their decision classes.
In this context, the cross-validation results in this study indicate that a decision support system using
the RF and XGBoost models could correctly predict the sufficient or insufficient allowance of the cows
at a rate around 80% or higher including the different subsets.

In a real world system, the observed thresholds may be useful for prediction (i.e., the current data
can be used as training set) under the assumption that the cows on pasture are similar, the recorded
features lie within the observed ranges, and the extraneous factors such as temperature, climate
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condition, pasture condition, grass quality, etc. are also similar to the ones in this study. However, it is
important to note that the thresholds are approximate since the underlying algorithms were trained
by the randomly selected subsets of the data used in this study. In general, care needs to be taken
while applying the thresholds for future predictions. Since the present study identified more than
one models that attained relatively higher accuracy in different conditions, it is further recommended
to apply GLM, NB, LDA and NNET along with SVM, XGBoost and RF, and determine the decision
class for new calving cows based on majority voting. In the case of different environment, pasture
conditions or different cow breeds, the models should be trained with new datasets and checked for
validity of the observed thresholds. Nonetheless, the results obtained in this study provide a strong
foundation towards ML based predictions of insufficient herbage allowance through decision support
systems in precision pasture management. Especially, the methods RF and XGBoost have shown
their strength in the context of present study, across the different subsets of data and are, therefore,
particularly well-suited for a decision support system.

5. Conclusions

The results of this work demonstrate that a set of RumiWatchSystem recorded feeding behaviour
and activity related variables could be used to predict insufficient herbage allowance of spring calving
dairy cows. Along with naïve Bayes, linear discriminant analysis and neural network, the prediction
based on random forest and extreme gradient boosting could be similar or more reliable than GLM
and other commonly used models in machine learning. The predictive performance of these models
was affected by the period of restricted herbage allowance. In general, insufficient allowance was
correctly predicted at a higher rate in case of six-week restriction periods than two-week restriction
periods. Based on the graphical presentation of marginal effects, the RF model further suggested the
ranges of predictor values, at which the model was apt to declare sufficient or insufficient herbage
allowance to be the decision class. The next step would examine the validity of these thresholds as well
as the performance of the proposed models for similar studies in other pasture management systems
towards developing a decision support system.
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Abbreviations

The following abbreviations are used in this manuscript:

ML Machine Learning
RF Random Forest
XGBoost Extreme Gradient Boosting
SVM Support Vector Machine
kNN k-Nearset Neighbour
NB Näive Bayes
LDA Linear Discriminant Analysis
NNET Neural Network
DT Decision Tree
LOOA Leave-Out-One-Animal
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CV Cross Validation
TP True Positive
FP False Positive
FN False Negative
TN True Negative
AUC Area Under the Curve
PPV Positive Predictive Value
ROC Receiver Operating Characteristic
PDP Partial Dependence Plot
BITEFREQ Bite Frequency
GRAZINGSTART Grazing Start
RUMINATECHEW Rumination Chews
RUMICHEWBOLUS Rumination Chews per Bolus
RUMIBOUTLENGTH Rumination Bout Length
RUMIBOUTTIME Rumination Bout Time
HACTIVITY Head Activity (index)
LAYDOWN Laying Down

Appendix A

Table A1. Independent samples t-tests for significant differences of means of each predictor in the
100% and 60% herbage allowance groups using S2, S6, M2, M6, L2 and L6 data.

Variable S2 S6 M2 M6 L2 L6

BITEFREQ 6.35 *** 4.76 *** 3.48 * 5.04 *** 3.2 *** 3.07 ***
GRAZINGSTART −0.97 ** −0.29 0.05 −0.68 −0.76 * −0.21
RUMINATECHEW −1689 * −9169 *** −7482 *** −3969 *** −8429 *** −7218 ***
RUMICHEWBOLUS −1.24 −8.12 *** −2.87 *** −3.06 *** −3.71 *** −4.95 ***
RUMIBOUTLENGTH −3.47 *** −10.90 *** −7.18 *** −6.04 *** −7.12 *** −9.0 ***
RUMIBOUTTIME −12.76 −107.04 *** −105.07 *** −53.9 *** −104.4 *** −80.0 ***
HACTIVITY 13.81 *** 15.31 *** 6.71 17.9 *** 8.53 ** 9.29 *
LAYDOWN −2.09 *** −1.48 *** −2.45 *** −1.32 ** −1.36 *** −0.81

P-value: *** < 0.001; ** < 0.01; * < 0.05.

Table A2. Independent samples t-tests for significant differences of means of each predictor in the
100% and 60% herbage allowance groups using W2, W6 and combined data.

Variable W2 W6 Combined

BITEFREQ 4.5 *** 4.22 *** 4.48 ***
GRAZINGSTART −0.538 * −0.343 −0.60 **
RUMINATECHEW −5812 *** −6840 *** −6680 ***
RUMICHEWBOLUS −2.52 *** −5.45 *** −4.48 ***
RUMIBOUTLENGTH −6.0 *** −8.71 *** −7.2 ***
RUMIBOUTTIME −73.48 *** −81.7 *** −80.1 ***
HACTIVITY 9.89 *** 14.2 *** 10.2 ***
LAYDOWN −2.0 *** −1.19 *** −1.7 ***

P-value: *** < 0.001; ** < 0.01; * < 0.05.
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Table A3. ANOVA F-test and multiple comparisons tests for the blocks of 60% and 100% herbage
allowance groups using each predictor of the combined data.

Variable S2 S6 M2 M6 L2 L6 F-Test

BITEFREQ 6.2 *** 4.9 *** 2.4 ** 4.9 *** 3.5 4.9 *** ∗ ∗ ∗
GRAZINGSTART −0.13 −0.83 −0.61 *** −0.65 −1.82 0.60 ∗ ∗ ∗
RUMINATECHEW −2672 ** −8147 *** −7154 *** −6517 *** −11215 *** −1674 ∗ ∗ ∗
RUMICHEWBOLUS −0.067 −6.76 *** −3.12 ** −6.43 *** −2.85 ** −3.62 *** ∗ ∗ ∗
RUMIBOUTLENGTH −3.82 ** −8.11 *** −4.87 *** −7.65 *** −10.7 ** −6.27 *** ∗ ∗ ∗
RUMIBOUTTIME −29.42 * −93.06 *** −85.13 *** −65.85 −154.47 *** −26.37 *** ∗ ∗ ∗
HACTIVITY 13.44 *** 9.31 *** 7.03 13.08 ** −5.08 25.22 *** ∗ ∗ ∗
LAYDOWN −2.40 *** −1.78 *** −1.13 −1.59 *** −2.04 *** −0.92 ∗ ∗ ∗

P-value: *** < 0.001; ** < 0.01; * < 0.05.

Table A4. Predictive performance of support vector machine based on the estimated sensitivity,
specificity, accuracy, positive predictive value (PPV), F-score and the area under receiver operating
characteristic curve (AUC) for two-week and six-week restriction period among the cows in early (S),
mid (M) and late (L) lactation stage using cross validation studies.

Subset Sensitivity Specificity Accuracy PPV F-Score AUC

S2 0.88 (0.011) 0.82 (0.06) 0.84 (0.005) 0.68 (0.011) 0.76 (0.008) 0.92 (0.005)
S6 0.88 (0.008) 0.90 (0.005) 0.89 (0.004) 0.84 (0.009) 0.86 (0.007) 0.96 (0.002)

M2 0.91 (0.013) 0.82 (0.008) 0.85 (0.006) 0.68 (0.013) 0.78 (0.011) 0.94 (0.006)
M6 0.89 (0.012) 0.83 (0.005) 0.85 (0.005) 0.68 (0.016) 0.76 (0.012) 0.93 (0.004)

L2 0.85 (0.012) 0.85 (0.005) 0.85 (0.004) 0.72 (0.013) 0.77 (0.008) 0.92 (0.004)
L6 0.87 (0.014) 0.79 (0.005) 0.81 (0.004) 0.52 (0.017) 0.64 (0.014) 0.89 (0.005)

W2 0.79 (0.007) 0.83 (0.004) 0.82 (0.003) 0.60 (0.008) 0.68 (0.006) 0.89 (0.003)
W6 0.77 (0.007) 0.87 (0.002) 0.84 (0.002) 0.66 (0.007) 0.70 (0.005) 0.90 (0.003)

Standard errors are indicated in the parentheses.

Table A5. Predictive performance of extreme gradient boosting based on the estimated sensitivity,
specificity, accuracy, positive predictive value (PPV), F-score and the area under receiver operating
characteristic curve (AUC) for two-week and six-week restriction period among the cows in early (S),
mid (M) and late (L) lactation stage using cross validation studies.

Subset Sensitivity Specificity Accuracy PPV F-Score AUC

S2 0.89 (0.011) 0.89 (0.007) 0.89 (0.006) 0.83 (0.013) 0.85 (0.009) 0.96 (0.005)
S6 0.89 (0.009) 0.91 (0.005) 0.90 (0.004) 0.85 (0.01) 0.87 (0.006) 0.96 (0.002)

M2 0.85 (0.014) 0.87 (0.008) 0.86 (0.007) 0.79 (0.015) 0.81 (0.011) 0.94 (0.008)
M6 0.85 (0.01) 0.88 (0.004) 0.87 (0.004) 0.79 (0.012) 0.81 (0.009) 0.94 (0.003)

L2 0.85 (0.013) 0.90 (0.006) 0.88 (0.006) 0.81 (0.014) 0.82 (0.011) 0.95 (0.006)
L6 0.90 (0.02) 0.92 (0.003) 0.91 (0.004) 0.83 (0.02) 0.86 (0.015) 0.97 (0.005)

W2 0.72 (0.008) 0.84 (0.004) 0.80 (0.004) 0.64 (0.008) 0.67 (0.006) 0.86 (0.004)
W6 0.75 (0.005) 0.88 (0.003) 0.84 (0.002) 0.71 (0.007) 0.73 (0.004) 0.91 (0.002)

Standard errors are indicated in the parentheses.
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Table A6. Predictive performance of linear discriminant analysis based on the estimated sensitivity,
specificity, accuracy, positive predictive value (PPV), F-score and the area under receiver operating
characteristic curve (AUC) for two-week and six-week restriction period among the cows in early (S),
mid (M) and late (L) lactation stage using cross validation studies.

Subset Sensitivity Specificity Accuracy PPV F-Score AUC

S2 0.77 (0.003) 0.76 (0.002) 0.76 (0.002) 0.55 (0.003) 0.64 (0.003) 0.84 (0.002)
S6 0.81 (0.002) 0.84 (0.002) 0.83 (0.002) 0.74 (0.003) 0.77 (0.002) 0.90 (0.002)

M2 0.82 (0.003) 0.81 (0.002) 0.81 (0.002) 0.67 (0.003) 0.73 (0.002) 0.89 (0.002)
M6 0.80 (0.003) 0.77 (0.002) 0.78 (0.002) 0.54 (0.003) 0.64 (0.003) 0.86 (0.002)

L2 0.71 (0.003) 0.77 (0.002) 0.75 (0.002) 0.53 (0.004) 0.60 (0.003) 0.81 (0.002)
L6 0.75 (0.003) 0.77 (0.001) 0.76 (0.001) 0.48 (0.003) 0.58 (0.002) 0.82 (0.001)

W2 0.69 (0.003) 0.79 (0.001) 0.77 (0.001) 0.51 (0.003) 0.58 (0.002) 0.81 (0.002)
W6 0.73 (0.003) 0.83 (0.001) 0.81 (0.001) 0.56 (0.003) 0.63 (0.002) 0.85 (0.001)

Standard errors are indicated in the parentheses.

Table A7. Predictive performance of neural network based on the estimated sensitivity, specificity,
accuracy, positive predictive value (PPV), F-score and the area under receiver operating characteristic
curve (AUC) for two-week and six-week restriction period among the cows in early (S), mid (M) and
late (L) lactation stage using cross validation studies.

Subset Sensitivity Specificity Accuracy PPV F-Score AUC

S2 0.78 (0.003) 0.77 (0.002) 0.77 (0.002) 0.59 (0.003) 0.66 (0.003) 0.85 (0.002)
S6 0.82 (0.004) 0.86 (0.001) 0.84 (0.002) 0.76 (0.004) 0.79 (0.003) 0.92 (0.002)

M2 0.81 (0.003) 0.82 (0.002) 0.81 (0.002) 0.69 (0.003) 0.74 (0.002) 0.89 (0.002)
M6 0.78 (0.003) 0.78 (0.002) 0.77 (0.002) 0.56 (0.004) 0.64 (0.003) 0.85 (0.002)

L2 0.74 (0.003) 0.80 (0.002) 0.77 (0.002) 0.60 (0.005) 0.65 (0.003) 0.84 (0.002)

W2 0.68 (0.003) 0.80 (0.003) 0.77 (0.001) 0.53 (0.003) 0.59 (0.002) 0.81 (0.003)
W6 0.70 (0.002) 0.83 (0.001) 0.80 (0.001) 0.57 (0.003) 0.62 (0.002) 0.84 (0.002)

Standard errors are indicated in the parentheses.

Table A8. Predictive performance of naïve Bayes based on the estimated sensitivity, specificity, accuracy,
positive predictive value (PPV), F-score and the area under receiver operating characteristic curve
(AUC) for two-week and six-week restriction period among the cows in early (S), mid (M) and late (L)
lactation stage using cross validation studies.

Subset Sensitivity Specificity Accuracy PPV F-Score AUC

S2 0.74 (0.003) 0.78 (0.002) 0.76 (0.002) 0.61 (0.003) 0.66 (0.002) 0.83 (0.002)
S6 0.78 (0.003) 0.86 (0.002) 0.82 (0.001) 0.77 (0.003) 0.77 (0.002) 0.90 (0.001)

M2 0.75 (0.003) 0.80 (0.002) 0.77 (0.002) 0.66 (0.003) 0.69 (0.002) 0.85 (0.002)
M6 0.66 (0.003) 0.76 (0.002) 0.72 (0.002) 0.54 (0.003) 0.59 (0.003) 0.78 (0.002)

L2 0.72 (0.003) 0.82 (0.002) 0.79 (0.002) 0.67 (0.004) 0.69 (0.003) 0.86 (0.002)
L6 0.71 (0.003) 0.81 (0.002) 0.78 (0.002) 0.60 (0.004) 0.65 (0.003) 0.84 (0.002)

W2 0.62 (0.003) 0.81 (0.001) 0.75 (0.001) 0.57 (0.003) 0.59 (0.002) 0.80 (0.002)
W6 0.64 (0.003) 0.85 (0.001) 0.79 (0.001) 0.64 (0.003) 0.63 (0.002) 0.83 (0.002)

Standard errors are indicated in the parentheses.
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